Vशुद्धि
Vशुद्धि

@V_Shuddhi

25 Tweets 80 reads Oct 20, 2022
संस्कृत श्लोक- मंत्र एवं उससे जुड़े गणितीय-ज्यामिति तथ्य
हमारे देश में एक ऐसा वर्ग है जो कि संस्कृत भाषा से तो अनभिज्ञ हैं परंतु उसके बारे ग़लत धारणा बनाने और देव वाणी का उपहास बनाने से पीछे नहीं
उनकी सोच ये है की संस्कृत भाषा में  जो कुछ भी लिखा है वो सब पूजा पाठ के मंत्र ही
होंगे जबकि वास्तविकता इससे बिल्कुल अलग है।
आइए देखते हैं -
"चतुरस्रं मण्डलं चिकीर्षन्न् अक्षयार्धं मध्यात्प्राचीमभ्यापातयेत्।
यदतिशिष्यते तस्य सह तृतीयेन मण्डलं परिलिखेत्।"
बौधायन ने उक्त श्लोक को लिखा है !
इसका अर्थ है -
यदि वर्ग की भुजा 2a हो
तो वृत्त की त्रिज्या r = [a+1/3(√2a – a)] = [1+1/3(√2 – 1)] a
ये क्या है ?
आपको ये क्या लगता था कोई मंत्र या श्लोक? अरे नहीं! पर ये तो गणित या विज्ञान का कोई निकला
शायद ईसा के जन्म से पूर्व ‘पिंगला’ के छंद शास्त्र में एक श्लोक प्रकट हुआ था।
हालायुध ने अपने ग्रंथ ‘मृतसंजीवनी मे’ , जो पिंगल के छन्द शास्त्र पर भाष्य है ,
इस श्लोक का उल्लेख किया है -
परे पूर्णमिति।
उपरिष्टादेकं चतुरस्रकोष्ठं लिखित्वा तस्याधस्तात् उभयतोर्धनिष्क्रान्तं कोष्ठद्वयं लिखेत्।
तस्याप्यधस्तात् त्रयं तस्याप्यधस्तात् चतुष्टयं यावदभिमतं स्थानमिति मेरुप्रस्तारः।
तस्य प्रथमे कोष्ठे एकसंख्यां व्यवस्थाप्य लक्षणमिदं प्रवर्तयेत्।
तत्र परे कोष्ठे यत् वृत्तसंख्याजातं तत् पूर्वकोष्ठयोः पूर्णं निवेशयेत्।
शायद ही आधुनिक शिक्षा में Maths मे Graduate हुए भारतीय छात्रों ने इसका नाम भी सुना हो , जबकि यह "मेरु प्रस्तार" है।
पर जब ये Western Countries से "Pascal's Triangle " के नाम से भारत आया तो इन, संस्कृत से पूर्णतया अनभिज्ञ, Sick-ular भारतीयों को शर्म इस बात पर आने लगी
कि भारत में ऐसे सिद्धांत क्यों नहीं दिये जाते।
"चतुराधिकं शतमष्टगुणं द्वाषष्टिस्तथा सहस्राणाम्।
अयुतद्वयस्य विष्कम्भस्यासन्नो वृत्तपरिणाहः॥"
ये भी इन्हें पूजा का कोई मंत्र ही लगता होगा लेकिन ये किसी गोले के व्यास व परिध का अनुपात है।
जब पाश्चात्य जगत से ये आया तो संक्षिप्त रुप लेकर आया ऐसा π जिसे 22/7 के रुप में डिकोड किया जाता है।
उक्त श्लोक को डिकोड करेंगे अंकों में तो कुछ इस तरह होगा-
(१०० + ४) * ८ + ६२०००/२०००० = ३.१४१६
ऋगवेद में π का मान ३२ अंक तक शुद्ध है।
गोपीभाग्य मधुव्रातः श्रुंगशोदधि संधिगः |
खलजीवितखाताव गलहाला रसंधरः ||
इस श्लोक को डीकोड करने पर ३२ अंको तक π का मान 3.1415926535897932384626433832792… आता है।
चक्रीय चतुर्भुज का क्षेत्रफल:
ब्राह्मस्फुटसिद्धान्त के गणिताध्याय के क्षेत्रव्यवहार के श्लोक १२.२१ में निम्नलिखित श्लोक वर्णित है-
स्थूल-फलम् त्रि-चतुर्-भुज-बाहु-प्रतिबाहु-योग-दल-घातस् ।
भुज-योग-अर्ध-चतुष्टय-भुज-ऊन-घातात् पदम् सूक्ष्मम् ॥
अर्थ:
त्रिभुज और चतुर्भुज का स्थूल (लगभग) क्षेत्रफल उसकी आमने-सामने की भुजाओं के योग के आधे के गुणनफल के बराबर होता है तथा सूक्ष्म (exact) क्षेत्रफल भुजाओं के योग के आधे में से भुजाओं की लम्बाई क्रमशः घटाकर और उनका गुणा करके वर्गमूल लेने से प्राप्त होता है।
ब्रह्मगुप्त प्रमेय:
चक्रीय चतुर्भुज के विकर्ण यदि लम्बवत हों तो उनके कटान बिन्दु से किसी भुजा पर डाला गया लम्ब सामने की भुजा को समद्विभाजित करता है।
ब्रह्मगुप्त ने श्लोक में कुछ इस प्रकार अभिव्यक्त किया है-
त्रि-भ्जे भुजौ तु भूमिस् तद्-लम्बस् लम्बक-अधरम् खण्डम् ।
ऊर्ध्वम् अवलम्ब-खण्डम् लम्बक-योग-अर्धम् अधर-ऊनम् ॥
(ब्राह्मस्फुटसिद्धान्त, गणिताध्याय, क्षेत्रव्यवहार १२.३१)
वर्ग समीकरण का व्यापक सूत्र:
ब्रह्मगुप्त का सूत्र इस प्रकार है-
वर्गचतुर्गुणितानां रुपाणां मध्यवर्गसहितानाम्।
मूलं मध्येनोनं वर्गद्विगुणोद्धृतं मध्यः ॥
ब्राह्मस्फुट-सिद्धांत - 18.44
अर्थात :
व्यक्त रुप (c) के साथ अव्यक्त वर्ग के चतुर्गुणित गुणांक (4ac) को अव्यक्त मध्य के गुणांक के वर्ग (b²) से सहित करें या जोड़ें।
इसका वर्गमूल प्राप्त करें तथा इसमें से मध्य अर्थात b को घटावें।
पुनः इस संख्या को अज्ञात ञ वर्ग के गुणांक (a) के द्विगुणित संख्या से भाग देवें।
प्राप्त संख्या ही अज्ञात "त्र" राशि का मान है।
श्रीधराचार्य ने इस बहुमूल्य सूत्र को भास्कराचार्य का नाम लेकर अविकल रुप से उद्धृत किया —
चतुराहतवर्गसमैः रुपैः पक्षद्वयं गुणयेत् ।
अव्यक्तवर्गरूपैर्युक्तौ पक्षौ ततो मूलम् ॥ -- भास्करीय बीजगणित, अव्यक्त-वर्गादि-समीकरण, पृ. - 221
अर्थात :-
प्रथम अव्यक्त वर्ग के चतुर्गुणित रूप या गुणांक (4a) से दोनों पक्षों के गुणांको को गुणित करके द्वितीय अव्यक्त गुणांक (b) के वर्गतुल्य रूप दोनों पक्षों में जोड़ें। पुनः द्वितीय पक्ष का वर्गमूल प्राप्त करें।
आर्यभट्ट की ज्या (Sine) सारणी:
आर्यभटीय का निम्नांकित श्लोक ही आर्यभट की ज्या-सारणी को निरूपित करता है:
मखि भखि फखि धखि णखि ञखि ङखि हस्झ स्ककि किष्ग श्घकि किघ्व ।
घ्लकि किग्र हक्य धकि किच स्ग झश ङ्व क्ल प्त फ छ कला-अर्ध-ज्यास् ॥
माधव की ज्या सारणी:
नीचे दिये गये श्लोक में माधव की ज्या सारणी दिखायी गयी है। जो चन्द्रकान्त राजू द्वारा लिखित 'कल्चरल फाउण्डेशन्स आफ मैथमेटिक्स' नामक पुस्तक से लिया गया है।
श्रेष्ठं नाम वरिष्ठानां हिमाद्रिर्वेदभावनः।
तपनो भानुसूक्तज्ञो मध्यमं विद्धि दोहनं।।
धिगाज्यो नाशनं कष्टं छत्रभोगाशयाम्बिका।
म्रिगाहारो नरेशोऽयं वीरोरनजयोत्सुकः।।
मूलं विशुद्धं नालस्य गानेषु विरला नराः।
अशुद्धिगुप्ताचोरश्रीः शंकुकर्णो नगेश्वरः।।
तनुजो गर्भजो मित्रं श्रीमानत्र सुखी सखे!।
शशी रात्रौ हिमाहारो वेगल्पः पथि सिन्धुरः।।
छायालयो गजो नीलो निर्मलो नास्ति सत्कुले।
रात्रौ दर्पणमभ्राङ्गं नागस्तुङ्गनखो बली।।
धीरो युवा कथालोलः पूज्यो नारीजरैर्भगः।
कन्यागारे नागवल्ली देवो विश्वस्थली भृगुः।।
तत्परादिकलान्तास्तु महाज्या माधवोदिताः।
स्वस्वपूर्वविशुद्धे तु शिष्टास्तत्खण्डमौर्विकाः।।
(२.९.५)
संख्या रेखा की परिकल्पना (Concept)
"एकप्रभृत्यापरार्धसंख्यास्वरूपपरिज्ञानाय रेखाध्यारोपणं कृत्वा एकेयं रेखा दशेयं, शतेयं, सहस्रेयं इति ग्राहयति, अवगमयति,
संख्यास्वरूम, केवलं, न तु संख्याया: रेखातत्त्वमेव।"
Brhadaranyaka Aankarabhasya
(4.4.25)
जिसका अर्थ है-
1 unit, 10 units, 100 units, 1000 units etc. up to parardha can be located in a number line. Now by using the number line one can do
operations like addition, subtraction and so on.
ये तो मात्र कुछ छोटे से उदाहरण हैं, जो ये दर्शाते है कि संस्कृत ग्रंथो में केवल पूजा पाठ या आरती के मंत्र नहीं है बल्कि तमाम गणित और विज्ञान भरा पड़ा है।
अगर आँखों से sick-ularism की पट्टी हटा के देखेंगे तो शायद विशिष्ट श्रेणी को भी देव-वाणी की महानता और उसके विस्तार का आभास का पता चल सके
🙏🏻🚩
source - thenarrativeworld.in

Loading suggestions...